
Maratona de Programação SAET 2025
Caderno de Soluções

2025

Maratona de Programação SAET 2025 – 2025 1

Problema A. Abrindo e Fechando Parênteses
Tempo limite: 1000 ms

Memória limite: 256 MiB
Autor: Ricardo Oliveira

Solução

É bastante conhecido o algoritmo de verificação que usa uma pilha como estrutura auxiliar ou, neste
caso em que há apenas um tipo de parênteses, um contador com o tamanho da pilha: incremente
o contador ao encontrar (e decremente o contador ao encontrar). Para ser bem balanceada, o
contador deve terminar em 0 (zero) e nunca pode ter assumido algum valor negativo (menor que
zero) durante o algoritmo.

Esta ideia é equivalente a considerar (como +1 e) como -1, e, dado um intervalo, verificar se a
soma de todos os seus valores é 0 e também se não existe nenhum prefixo do intervalo cuja soma é
negativa. O gráfico abaixo exemplifica a soma dos prefixos para ()(()), que é bem balanceada;
note que termina em 0 e nunca fica abaixo de 0 no gráfico.

Apenas utilizar esse algoritmo a cada operação do tipo 2 faria a solução ter uma complexidade
de O(Q × N), que é muito lento para os limites deste problema. Precisamos de uma estrutura de
dados auxiliar que, dado um intervalo [l..r], permita determinar a soma dos valores no intervalo,
e também o valor da menor soma de um prefixo do intervalo (ambos devem ser iguais a 0 para
a substring ser balanceada). Com uma Árvore de Segmentos, podemos determinar ambos os
valores em O(lg N), o que é rápido o bastante.

Nos resta saber como atualizar a árvore a cada operação do tipo 1. Vamos notar o que acontece
com as somas dos prefixos do intervalo quando ele é invertido; os gráficos abaixo exemplificam a
soma dos prefixos para (()))((e seu inverso))((()), que não são bem balanceados:

Note que o gráfico apenas se “espelha verticalmente”, de forma que: a soma do intervalo tem seu
sinal invertido; o novo valor mínimo do intervalo passa a ser o antigo valor máximo do intervalo,
com sinal invertido; e o novo valor máximo do intervalo passa a ser o o antigo valor mínimo, também
com sinal invertido. Assim, é possível processar cada operação em O(lg N) com a técnica de Lazy
Propagation, mantendo em cada nodo da árvore a soma, o menor valor e o maior valor dos prefixos
do segmento, e os atualizando conforme as propriedades de “espelhamento” citadas.

Uma referência para a Árvore de Segmentos e Lazy Propagation é https://cp-algorithms.com/
data_structures/segment_tree.html.

Complexidade total: O(N + Q lg N)

https://cp-algorithms.com/data_structures/segment_tree.html
https://cp-algorithms.com/data_structures/segment_tree.html

Maratona de Programação SAET 2025 – 2025 2

Problema B. BugNote
Tempo limite: 1000 ms

Memória limite: 256 MiB
Autor: Henrique Farias

Solução
A ideia da solução deste problema é que para cada nome escrito você deva comparar a string do
nome com o set de nomes de alunos, caso o nome seja de um aluno existente, você faz uma segunda
comparação com o tamanho do código, caso exceda, incremente em 1 uma váriavel relacionada ao
índice daquele aluno, pois assim você também sempre deve verificar se essa variável para tal aluno
não exceda 3, o que faria ele imune.

A complexidade da solução é O(N × Q),

Maratona de Programação SAET 2025 – 2025 3

Problema C. Cabeçada
Tempo limite: 1000 ms

Memória limite: 256 MiB
Autor: Henrique Farias

Solução
Para este problema a primeira etapa da solução consiste em construir um grafo ponderado onde
cada vértice representa um destino e cada aresta representa uma rua com distância D e altura da
placa H. Apenas as arestas com H = 0 (sem placa) ou H ≥ 2.275 (placa segura) são adicionadas
ao grafo, pois as demais representam caminhos inseguros e devem ser completamente ignoradas.
Em seguida, para cada par de origem e destino, calculamos a menor distância com o algoritmo
de Dijkstra, já que o grafo possui pesos positivos e pode ter até 100 vértices e 200 arestas, o que
garante eficiência dentro do limite de tempo. Depois de cada iteração se Henrique não consegue
chegar ao destino i, ele deve continuar sua próxima tentativa a partir do local em que parou (ou
seja, sua posição atual não muda).

A cada iteração, o algoritmo de Dijkstra é executado a partir da posição atual, retornando a menor
distância ou -1 caso o vértice de destino seja inalcançável.

Uma referência para o algoritmo de Dijkstra: https://cp-algorithms.com/graph/dijkstra.html

Complexidade total: O(Q × (M log N)).

https://cp-algorithms.com/graph/dijkstra.html

Maratona de Programação SAET 2025 – 2025 4

Problema D. Disco de senha
Tempo limite: 2000 ms

Memória limite: 512 MiB
Autor: Ricardo Oliveira

Solução
Primeiramente, vamos remover a condição de que a string é circular concatenando a string
com ela mesma. No primeiro exemplo de entrada, vamos transformar a string S =fbcfbc em
S =fbcfbcfbcfbc. O problema se reduz agora a contar quantas substrings distintas de tamanho
máximo K existem em S.

O vetor de sufixos (Suffix Array) de uma string S é o vetor de todos os sufixos de S, em ordem
lexicografica crescente. Como exemplo, o vetor de sufixos de fbcfbcfbcfbc é:

0:
1: bc
2: bcfbc
3: bcfbcfbc
4: bcfbcfbcfbc
5: c
6: cfbc
7: cfbcfbc
8: cfbcfbcfbc
9: fbc

10: fbcfbc
11: fbcfbcfbc
12: fbcfbcfbcfbc

Não é necessário armazenar cópias da string em cada posição do vetor, mas sim apenas em qual
posição em S o sufixo começa.

Note que toda substring de S é prefixo de algum de seu sufixo! Por exemplo, no sufixo bcfbc estão
as substrings b, bc, bcf, bcfb e bcfbc.

Vamos construir a resposta de maneira incremental, percorrendo o vetor de sufixos em ordem;
para cada sufixo processado, vamos incrementar na resposta a quantidade de novas substrings de
tamanho máximo K contidas no sufixo (as que ainda não foram “vistas” anteriormente).

Para cada sufixo na posição i do vetor de sufixos, seja LCPi o tamanho do maior prefixo comum
(Longest Commom Prefix) de i com o sufixo i − 1 no vetor de sufixos. Como exemplo, LCP2 = 2
no exemplo dado, uma vez que o maior prefixo comum do sufixo na posição 2 (bcfbc) com o da
posição 1 (bc) tem tamanho 2; Como exemplo exemplo, LCP6 = 1; etc.

Para cada sufixo na posição i, note que todas as substrings nesse sufixo que tem tamanho até LCPi

já foram “vistas” em iterações anteriores; assim, há min{K, |sufixo|} − LCPi novas substrings de
tamanho máximo K no sufixo i (ou nenhuma se LCPi ≥ k).

Uma referência para o algoritmo de construção do vetor de sufixos e cálculo de LCP é:

https://cp-algorithms.com/string/suffix-array.html

O problema pode ser resolvido em O(N lg N), mas a solução O(N lg2 N) é rápida o bastante para
os limites deste problema.

https://cp-algorithms.com/string/suffix-array.html

Maratona de Programação SAET 2025 – 2025 5

Problema E. Espaço na van
Tempo limite: 1000 ms

Memória limite: 256 MiB
Autor: Ricardo Oliveira

Solução
Para cada poltrona, verifique se sua largura é igual ou menor a L (isto é, se li ≤ L). Se for,
incremente um contador. Ao final da verificação, este contador terá o número de poltronas que
podem ser usadas. A resposta é SIM se e somente se este número for maior ou igual a N .

Complexidade: O(M)

Maratona de Programação SAET 2025 – 2025 6

Problema F. Formação da dupla perfeita
Tempo limite: 1000 ms

Memória limite: 256 MiB
Autor: Ricardo Oliveira

Solução

Uma solução direta seria iterar em todos os O(N2) pares de discípulos e verificar, em O(F), se cada
par domina ao menos uma forma em, totalizando O(N2 × F). Entretanto, esta solução não é rápida
o bastante para os limites dados no problema.

Para reduzir a complexidade, note que é possível converter a string dada para cada discípulo em
um bitmask de F bits: um inteiro onde o i−ésimo bit de sua representação binária é 1 se o i−ésimo
caractere é S, ou 0 se é N. Como F ≤ 10, este inteiro será no máximo 210 − 1 = 1023, que pode ser
armazenado em uma variável int. Esta conversão é feita em O(F) para cada discípulo, totalizando
O(NF).

Seja bmi o bitmask do discípulo i. Para testar em O(1) se os discípulos i e j podem ser uma dupla,
basta verificar se bmi|bmj = 2F − 1 (pois | é o operador ou bit-a-bit, e 2F − 1 é o bitmask com todos
os bits em 1). Assim, a complexidade cai para O(N2). Entretanto, esta complexidade ainda não é
rápida o bastante.

Note que há no máximo 2F bitmasks possíveis, que é no máximo 210 = 1024 para os limites do
problema!

Pré-compute Q[bm], a quantidade de discípulos cuja bitmask é bm. Note que, para cada par de
bitmasks bmA e bmB com bmA ̸= bmB onde bmA|bmB = 2F − 1, há Q[bmA] × Q[bmB] duplas
possíveis de serem formadas. Assim, itere entre os O((2F)2) pares de bitmasks distintas e incremente
a resposta em Q(bmA) × Q(bmB) para cada par possível.

Há um corner case, que é considerar quando bmA e bmB são a mesma bitmask. Note que o
único caso em que é possível formar duplas com uma bitmask e ela mesma é a bitmask 2F − 1
(discípulos que dominam todas as técnicas). Para contar este caso, incremente a resposta em
(Q[2F − 1] × (Q[2F − 1] − 1))/2, o número de duplas que podem ser formadas entre eles.

A resposta pode não caber em um inteiro de 32 bits. Use long long.

Complexidade total: O(NF + (2F)2).

Maratona de Programação SAET 2025 – 2025 7

Problema G. Genectorio
Tempo limite: 1000 ms

Memória limite: 256 MiB
Autor: Henrique Farias

Solução
A solução do problema pode ser divida em 3 etapas: Primeiro, é necessário compreender que cada
nucleotídeo (A, C, G, T) possui um par complementar fixo: A é pareado com T, T com A, C com
G e G com C. Podemos representar essas letras por números inteiros (A = 0, C = 1, G = 2, T = 3)
para facilitar o uso do operador XOR.

Em seguida, para cada posição i da string original S, o deslocamento utilizado na criptografia é
determinado pelo XOR cumulativo entre X e os valores inteiros dos nucleotídeos já processados, isto
é:

deslocamentoi = X ⊕ S1 ⊕ S2 ⊕ . . . ⊕ Si

onde ⊕ representa o operador XOR bit a bit.

Após calcular o deslocamento, ele é reduzido módulo 4 (pois o alfabeto tem apenas 4 letras), e
o resultado indica o número de posições que devemos avançar no alfabeto circular {A, C, G, T} a
partir da letra complementar do nucleotídeo atual. Assim, a nova letra é obtida por:

reposta = (complementar(Si) + deslocamentoi) mod 4

Complexidade total: O(N).

Maratona de Programação SAET 2025 – 2025 8

Problema H. Hora da Pizza
Tempo limite: 1000 ms

Memória limite: 256 MiB
Autor: Ricardo Oliveira

Solução
Primeiramente, faremos X = |X| e Y = |Y | de forma a colocar o ponto P no primeiro quadrante do
círculo. Por simetria isto não altera a resposta, e nos permite considerar apenas o caso em que P
está no primeiro quadrante.

Cada área pode então ser calculada separadamente, de maneira analítica:

Área = ∠OAB+ △ ACO+ △ OBD + □OCPD Área = ∠OAB+ △ BCP− △ OAC

Área = ∠OAB− △ OAP− △ OBC Área = ∠OAB+ △ BCP− △ ACD

Alternativamente, quando três das quatro áreas são calculadas, a quarta pode ser dada pela subtração
da área total (πR2) das demais áreas.

Lembre de sempre levar consigo uma boa implementação de funções da geometria!

Complexidade: O(1)

Maratona de Programação SAET 2025 – 2025 9

Problema I. Its Over
Tempo limite: 3000 ms

Memória limite: 512 MiB
Autor: Henrique Farias

Solução
Para resolver este problema uma abordagem seria pré-computar todos os número primos menores
ou iguais que 2 × 107 usando o Crivo de Erasthotones. Com todos os primos já pré-computados
podemos iterar por cada elemento do array guardando a soma daqueles nas posições primos numa
váriavel e depois usar o crivo novamente para verificar se essa soma é primo também.

O valor 2 × 107 é suficiente porque existem menos de 200 primos até 1000, e portanto a soma dos
valores nas posições primas não passa de 200 × 105.

Uma referência para o Crivo de Erasthotones: https://cp-algorithms.com/algebra/sieve-of-eratosthenes.
html

Complexidade: O(T × loglogT + M) sendo T < 2 × 107.

https://cp-algorithms.com/algebra/sieve-of-eratosthenes.html
https://cp-algorithms.com/algebra/sieve-of-eratosthenes.html

Maratona de Programação SAET 2025 – 2025 10

Problema J. Jogo
Tempo limite: 1000 ms

Memória limite: 256 MiB
Autor: Henrique Farias

Solução
Partindo da segunda data podemos calcular a distância de tempo em relação a data anterior da
seguinte forma: (ai − ai−1) × 360 + (mi − mi−1) × 30 + (di − di−1). Para cada iteração pode-se tirar
o mínimo e máximo dos valores e no final imprimi-los como resposta correta.

Complexidade total: O(N).

Maratona de Programação SAET 2025 – 2025 11

Problema K. Kurt, O camaleão que curte reló-
gios

Tempo limite: 1000 ms
Memória limite: 256 MiB
Autor: Henrique Farias

Solução
Primeiro, observamos que cada relógio opera em um ciclo de 12 horas, ou seja, há 12×60×60 = 43.200
segundos distintos possíveis. É conveniente converter cada horário (hi, mi, si) em um único valor de
segundos ti = hi × 3600 + mi × 60 + si. Assim, cada relógio pode ser representado como um valor
entre 0 e 43.199. A chave para resolver o problema é perceber que, se escolhermos um relógio alvo
com tempo ti, podemos calcular o custo (em cliques) necessário para ajustar todos os outros relógios
para que coincidam com ti. Quando pressionamos os botões dos demais relógios, cada relógio que
está adiantado em relação a ti precisa esperar até que o ciclo complete 43.200 segundos, enquanto os
relógios atrasados exigem uma quantidade proporcional de cliques para alcançá-lo. Assim, o custo
total para alinhar todos os relógios a um tempo ti pode ser modelado em função das diferenças
entre os tempos atuais e ti. A solução esperada converte os horários para segundos e armazena em
um vetor v. Em seguida, ordena o vetor e calcula a soma total dos tempos. Para cada relógio vi,
avalia-se o custo para torná-lo a referência, utilizando a fórmula:

custo = soma − n · vi + i · MX,

onde MX = 43.200 representa o total de segundos em 12 horas, e o termo i · MX ajusta os
relógios que ultrapassariam o ciclo completo de tempo. O menor custo encontrado entre todas as
possibilidades é a resposta.

Complexidade total: O(N log N)

Maratona de Programação SAET 2025 – 2025 12

Problema L. Laranja
Tempo limite: 1000 ms

Memória limite: 256 MiB
Autor: Henrique Farias

Solução
Para a solução deste problema primeiro levamos em consideração que tanto as laranjas quanto
as gavetas são distinguíveis, o problema equivale a contar o número de maneiras de particionar
l elementos distintos em três subconjuntos ordenados (A, B, C) tais que |A|, |B|, |C| ≤ 4 e |A| +
|B| + |C| = l. Para cada possível par de tamanhos (j, k) das duas primeiras gavetas, o tamanho da
terceira gaveta é cur = l − j − k. Se cur for válido (entre 0 e 4), o número de maneiras de escolher
quais laranjas vão para cada gaveta é dado pelo número multinomial:

l!
j! k! cur! .

Assim, somando sobre todas as combinações válidas de (j, k), obtemos o número total de arranjos
possíveis.

A solução esperada pré-calcula os fatoriais de 0! até 12! para permitir o cálculo eficiente das
combinações multinomiais. Para cada dia, ele itera sobre todos os pares de tamanhos de gavetas
(j, k) de 0 a 4 e soma os resultados válidos. Por fim, imprime o número total de maneiras
correspondentes ou −1 se houver excesso de laranjas.

Complexidade total: O(N)

Maratona de Programação SAET 2025 – 2025 13

Problema M. Madrugada na Praia
Tempo limite: 1000 ms

Memória limite: 256 MiB
Autor: Ricardo Oliveira

Solução
Sobraram B − V balões após a ventania. Assim, verifique (com if) se B − V é divisível por N ,
testando se o resto da divisão é igual a 0 (isto é, se (B − V)%N = 0). Se for, imprima B − V

N
. Caso

contrário, imprima −1.

Complexidade: O(1)

