0.

o°°o

acm International Collegiate
Programming Contest

Maratona de Programacao SAET 2025

Caderno de Solugoes

2025

Maratona de Programacao SAET 2025 — 2025 1

Problema A. Abrindo e Fechando Parénteses

Tempo limite: 1000 ms
Memoria limite: 256 MiB

Autor: Ricardo Oliveira

Solugao

E bastante conhecido o algoritmo de verificacio que usa uma pilha como estrutura auxiliar ou, neste
caso em que ha apenas um tipo de parénteses, um contador com o tamanho da pilha: incremente
o contador ao encontrar (e decremente o contador ao encontrar). Para ser bem balanceada, o
contador deve terminar em 0 (zero) e nunca pode ter assumido algum valor negativo (menor que
zero) durante o algoritmo.

Esta ideia é equivalente a considerar (como +1 e) como -1, e, dado um intervalo, verificar se a
soma de todos os seus valores é 0 e também se ndo existe nenhum prefixo do intervalo cuja soma é
negativa. O gréfico abaixo exemplifica a soma dos prefixos para () (), que é bem balanceada;
note que termina em 0 e nunca fica abaixo de 0 no grafico.

2

]

It T

=
w
.
wn
o

Apenas utilizar esse algoritmo a cada operacgao do tipo 2 faria a solucdo ter uma complexidade
de O(Q x N), que é muito lento para os limites deste problema. Precisamos de uma estrutura de
dados auxiliar que, dado um intervalo [l..r], permita determinar a soma dos valores no intervalo,
e também o valor da menor soma de um prefixo do intervalo (ambos devem ser iguais a 0 para
a substring ser balanceada). Com uma Arvore de Segmentos, podemos determinar ambos os
valores em O(lg N), o que é répido o bastante.

Nos resta saber como atualizar a arvore a cada operacao do tipo 1. Vamos notar o que acontece
com as somas dos prefixos do intervalo quando ele é invertido; os graficos abaixo exemplificam a
soma, dos prefixos para (())) ((e seu inverso)) ((()), que ndo sao bem balanceados:

Note que o grafico apenas se “espelha verticalmente”, de forma que: a soma do intervalo tem seu
sinal invertido; o novo valor minimo do intervalo passa a ser o antigo valor maximo do intervalo,
com sinal invertido; e o novo valor méaximo do intervalo passa a ser o o antigo valor minimo, também
com sinal invertido. Assim, é possivel processar cada operacao em O(lg N) com a técnica de Lazy
Propagation, mantendo em cada nodo da arvore a soma, o menor valor e o maior valor dos prefixos
do segmento, e os atualizando conforme as propriedades de “espelhamento” citadas.

Uma referéncia para a Arvore de Segmentos e Lazy Propagation é https://cp-algorithms.com/
data_structures/segment_tree.html.

Complexidade total: O(N + Qlg N)

https://cp-algorithms.com/data_structures/segment_tree.html
https://cp-algorithms.com/data_structures/segment_tree.html

Maratona de Programacao SAET 2025 — 2025 2

Problema B. BugNote

Tempo limite: 1000 ms
Memoria limite: 256 MiB
Autor: Henrique Farias

Solucao

A ideia da solucdo deste problema é que para cada nome escrito vocé deva comparar a string do
nome com o set de nomes de alunos, caso o nome seja de um aluno existente, vocé faz uma segunda
comparacao com o tamanho do cédigo, caso exceda, incremente em 1 uma variavel relacionada ao
indice daquele aluno, pois assim vocé também sempre deve verificar se essa variavel para tal aluno
néo exceda 3, o que faria ele imune.

A complexidade da soluc¢ao é O(N x Q),

Maratona de Programacao SAET 2025 — 2025 3

Problema C. Cabecada

Tempo limite: 1000 ms
Memoria limite: 256 MiB
Autor: Henrique Farias

Solucao

Para este problema a primeira etapa da solucdo consiste em construir um grafo ponderado onde
cada vértice representa um destino e cada aresta representa uma rua com distdncia D e altura da
placa H. Apenas as arestas com H = 0 (sem placa) ou H > 2.275 (placa segura) sdo adicionadas
ao grafo, pois as demais representam caminhos inseguros e devem ser completamente ignoradas.
Em seguida, para cada par de origem e destino, calculamos a menor distdncia com o algoritmo
de Dijkstra, ja que o grafo possui pesos positivos e pode ter até 100 vértices e 200 arestas, o que
garante eficiéncia dentro do limite de tempo. Depois de cada iteracdo se Henrique nao consegue
chegar ao destino i, ele deve continuar sua proxima tentativa a partir do local em que parou (ou
seja, sua posicdo atual ndo muda).

A cada iteragdo, o algoritmo de Dijkstra é executado a partir da posi¢do atual, retornando a menor
distancia ou -1 caso o vértice de destino seja inalcangével.

Uma referéncia para o algoritmo de Dijkstra: https://cp-algorithms.com/graph/dijkstra.html

Complexidade total: O(Q x (M log N)).

https://cp-algorithms.com/graph/dijkstra.html

Maratona de Programacao SAET 2025 — 2025 4

Problema D. Disco de senha

Tempo limite: 2000 ms
Memoria limite: 512 MiB
Autor: Ricardo Oliveira

Solugao

Primeiramente, vamos remover a condicdo de que a string é circular concatenando a string
com ela mesma. No primeiro exemplo de entrada, vamos transformar a string S =fbcfbc em
S =fbcfbcfbecfbe. O problema se reduz agora a contar quantas substrings distintas de tamanho
méximo K existem em S.

O wvetor de sufizos (Suffix Array) de uma string S é o vetor de todos os sufixos de S, em ordem
lexicografica crescente. Como exemplo, o vetor de sufixos de fbcfbcfbecfbe é:

: bc

: bcfbc

: bcfbcfbc

: bcfbcfbcfbe
:C

: cfbc

: cfbcfbc

: cfbcfbcfbe
: fbc

: fbcfbc

: fbcfbcfbce

: fbcfbcfbcfbc

© 00 NO O WN +~- O

= e
N = O

Nao é necessario armazenar copias da string em cada posi¢ao do vetor, mas sim apenas em qual
posicdo em S o sufixo comega.

Note que toda substring de .S é prefixo de algum de seu sufixo! Por exemplo, no sufixo bcfbc estao
as substrings b, bc, bef, bcfb e befbe.

Vamos construir a resposta de maneira incremental, percorrendo o vetor de sufixos em ordem,;
para cada sufixo processado, vamos incrementar na resposta a quantidade de novas substrings de
tamanho maximo K contidas no sufixo (as que ainda nao foram “vistas” anteriormente).

Para cada sufixo na posicao ¢ do vetor de sufixos, seja LC'P; o tamanho do maior prefixo comum
(Longest Commom Prefix) de i com o sufixo ¢ — 1 no vetor de sufixos. Como exemplo, LC'Py = 2
no exemplo dado, uma vez que o maior prefixo comum do sufixo na posigao 2 (bcfbc) com o da
posigao 1 (bc) tem tamanho 2; Como exemplo exemplo, LC Ps = 1; etc.

Para cada sufixo na posicao i, note que todas as substrings nesse sufixo que tem tamanho até LC'P;
ja foram “vistas” em iteracoes anteriores; assim, ha min{ K, |sufixo|} — LC'P; novas substrings de
tamanho maximo K no sufixo ¢ (ou nenhuma se LCP; > k).

Uma, referéncia para o algoritmo de construgéo do vetor de sufixos e calculo de LC'P é:
https://cp-algorithms.com/string/suffix-array.html

O problema pode ser resolvido em O(N Ig N), mas a solucdo O(N lg? N) é répida o bastante para
os limites deste problema.

https://cp-algorithms.com/string/suffix-array.html

Maratona de Programacao SAET 2025 — 2025)

Problema E. Espaco na van

Tempo limite: 1000 ms
Memoria limite: 256 MiB
Autor: Ricardo Oliveira

Solucao

Para cada poltrona, verifique se sua largura é igual ou menor a L (isto é, se [; < L). Se for,
incremente um contador. Ao final da verificacdo, este contador terd o nimero de poltronas que
podem ser usadas. A resposta é SIM se e somente se este nimero for maior ou igual a V.

Complexidade: O(M)

Maratona de Programacao SAET 2025 — 2025 6

Problema F. Formacao da dupla perfeita

Tempo limite: 1000 ms
Memoria limite: 256 MiB
Autor: Ricardo Oliveira

Solucao

Uma solugdo direta seria iterar em todos os O(N?) pares de discipulos e verificar, em O(F), se cada
par domina ao menos uma forma em, totalizando O(N? x F'). Entretanto, esta solucido nio é rdpida
o bastante para os limites dados no problema.

Para reduzir a complexidade, note que é possivel converter a string dada para cada discipulo em
um bitmask de I bits: um inteiro onde o t—ésimo bit de sua representacao binaria é 1 se o i—ésimo
caractere é S, ou 0 se é N. Como F < 10, este inteiro serd no méximo 2'% — 1 = 1023, que pode ser
armazenado em uma variavel int. Esta conversao é feita em O(F') para cada discipulo, totalizando
O(NF).

Seja bm; o bitmask do discipulo i. Para testar em O(1) se os discipulos i e j podem ser uma dupla,
basta verificar se bm;|bm; = 25 — 1 (pois | é o operador ou bit-a-bit, e 2" — 1 é o bitmask com todos
os bits em 1). Assim, a complexidade cai para O(N?). Entretanto, esta complexidade ainda ndo é
rapida o bastante.

Note que ha no méaximo 2F bitmasks possiveis, que é no méaximo 2'9 = 1024 para os limites do
problema!

Pré-compute Q[bm], a quantidade de discipulos cuja bitmask é bm. Note que, para cada par de
bitmasks bma e bmp com bma # bmp onde bmalbmp = 2F — 1, ha Q[bma] x Q[bmp] duplas
possiveis de serem formadas. Assim, itere entre os O((2f)?) pares de bitmasks distintas e incremente
a resposta em Q(bm4) x Q(bmp) para cada par possivel.

Ha um corner case, que é considerar quando bm, e bmp sdo a mesma bitmask. Note que o
tinico caso em que é possivel formar duplas com uma bitmask e ela mesma é a bitmask 28 — 1
(discipulos que dominam todas as técnicas). Para contar este caso, incremente a resposta em
(Q2F — 1] x (Q[2F — 1] — 1))/2, o ntimero de duplas que podem ser formadas entre eles.

A resposta pode nao caber em um inteiro de 32 bits. Use long long.

Complexidade total: O(NF + (2F)?).

Maratona de Programacao SAET 2025 — 2025 7

Problema G. Genectorio

Tempo limite: 1000 ms
Memoria limite: 256 MiB
Autor: Henrique Farias

Solucao

A solucdo do problema pode ser divida em 3 etapas: Primeiro, é necessario compreender que cada
nucleotideo (A, C, G, T) possui um par complementar fixo: A é pareado com T, T com A, C com
G e G com C. Podemos representar essas letras por ntimeros inteiros (4 =0,C =1,G =2,T = 3)
para facilitar o uso do operador XOR.

Em seguida, para cada posicao i da string original S, o deslocamento utilizado na criptografia é
determinado pelo X0OR cumulativo entre X e os valores inteiros dos nucleotideos ja processados, isto
é:

deslocamento;, = X @ S1 D So® ... P S;

onde @ representa o operador XOR bit a bit.

Apés calcular o deslocamento, ele é reduzido médulo 4 (pois o alfabeto tem apenas 4 letras), e
o resultado indica o nimero de posigoes que devemos avangar no alfabeto circular {A,C,G, T} a
partir da letra complementar do nucleotideo atual. Assim, a nova letra é obtida por:

reposta = (complementar(.S;) + deslocamento;) mod 4

Complexidade total: O(N).

Maratona de Programacao SAET 2025 — 2025

Problema H. Hora da Pizza

Tempo limite: 1000 ms
Memoria limite: 256 MiB
Autor: Ricardo Oliveira

Solucao

Primeiramente, faremos X = |X| e Y = |Y| de forma a colocar o ponto P no primeiro quadrante do
circulo. Por simetria isto ndo altera a resposta, e nos permite considerar apenas o caso em que P

estd no primeiro quadrante.

Cada area pode entdo ser calculada separadamente, de maneira analitica:

-
.

Area = ZOAB+ A ACO+ A OBD +0OCPD

//

/

\

\\
~_ |

/“
\

/
—

Area = Z/OAB— A OAP— A OBC

/ | AN
\,
/ N\

/ N\
/ \
/ I E—

/”':// ‘\I
\ 1 \\
. \ /
\ \
\ \
\ \
L \
o N\

Area = ZOAB+ A BCP— A OAC

/-—\/\\

Area = Z/OAB+ A BOP— A ACD

Alternativamente, quando trés das quatro areas sao calculadas, a quarta pode ser dada pela subtracao

da 4rea total (7R?) das demais 4reas.

Lembre de sempre levar consigo uma boa implementacio de funcoes da geometria!

Complexidade: O(1)

Maratona de Programacao SAET 2025 — 2025 9

Problema 1. Its Over

Tempo limite: 3000 ms
Memoria limite: 512 MiB
Autor: Henrique Farias

Solucao

Para resolver este problema uma abordagem seria pré-computar todos os niimero primos menores
ou iguais que 2 x 107 usando o Crivo de Erasthotones. Com todos os primos j pré-computados
podemos iterar por cada elemento do array guardando a soma daqueles nas posi¢oes primos numa
variavel e depois usar o crivo novamente para verificar se essa soma é primo também.

O valor 2 x 107 é suficiente porque existem menos de 200 primos até 1000, e portanto a soma dos
valores nas posicoes primas nao passa de 200 x 10°.

Uma referéncia para o Crivo de Erasthotones: https://cp-algorithms.com/algebra/sieve-of-eratosthenes
html

Complexidade: O(T x loglogT + M) sendo T' < 2 x 10”.

https://cp-algorithms.com/algebra/sieve-of-eratosthenes.html
https://cp-algorithms.com/algebra/sieve-of-eratosthenes.html

Maratona de Programacao SAET 2025 — 2025 10

Problema J. Jogo

Tempo limite: 1000 ms
Memoria limite: 256 MiB
Autor: Henrique Farias

Solucao

Partindo da segunda data podemos calcular a distancia de tempo em relagao a data anterior da
seguinte forma: (a; — a;—1) x 360 + (m; —m;—1) x 30 + (d; — d;—1). Para cada iteracdo pode-se tirar
o minimo e maximo dos valores e no final imprimi-los como resposta correta.

Complexidade total: O(N).

Maratona de Programacao SAET 2025 — 2025 11

Problema K. Kurt, O camaleao que curte relo-
gios

Tempo limite: 1000 ms
Memdria limite: 256 MiB
Autor: Henrique Farias

Solucao

Primeiro, observamos que cada relégio opera em um ciclo de 12 horas, ou seja, ha 12x60x 60 = 43.200
segundos distintos possiveis. E conveniente converter cada horério (hi, m;, s;) em um tnico valor de
segundos t; = h; x 3600 + m; x 60 4+ s;. Assim, cada relégio pode ser representado como um valor
entre 0 e 43.199. A chave para resolver o problema é perceber que, se escolhermos um relégio alvo
com tempo t;, podemos calcular o custo (em cliques) necessédrio para ajustar todos os outros relégios
para que coincidam com t;. Quando pressionamos os botoes dos demais relégios, cada relégio que
estd adiantado em relacdo a t; precisa esperar até que o ciclo complete 43.200 segundos, enquanto os
relogios atrasados exigem uma quantidade proporcional de cliques para alcangé-lo. Assim, o custo
total para alinhar todos os reldgios a um tempo t¢; pode ser modelado em funcao das diferencas
entre os tempos atuais e t;. A solucdo esperada converte os hordrios para segundos e armazena em
um vetor v. Em seguida, ordena o vetor e calcula a soma total dos tempos. Para cada relogio v;,
avalia-se o custo para torné-lo a referéncia, utilizando a féormula:

custo =soma —n-v; +1i- M X,

onde M X = 43.200 representa o total de segundos em 12 horas, e o termo i - M X ajusta os
relogios que ultrapassariam o ciclo completo de tempo. O menor custo encontrado entre todas as
possibilidades é a resposta.

Complexidade total: O(N log N)

Maratona de Programacao SAET 2025 — 2025 12

Problema L. Laranja

Tempo limite: 1000 ms
Memoria limite: 256 MiB
Autor: Henrique Farias

Solucao

Para a solucao deste problema primeiro levamos em consideracdo que tanto as laranjas quanto
as gavetas sao distinguiveis, o problema equivale a contar o niimero de maneiras de particionar
[elementos distintos em trés subconjuntos ordenados (A, B, C) tais que |A|,|B|,|C| < 4 e |A| +
|B| + |C| = [. Para cada possivel par de tamanhos (j, k) das duas primeiras gavetas, o tamanho da
terceira gaveta é cur =1 — j — k. Se cur for valido (entre 0 e 4), o nimero de maneiras de escolher
quais laranjas vao para cada gaveta é dado pelo niimero multinomial:

[!
gV E! cur!”

Assim, somando sobre todas as combinagoes validas de (j, k), obtemos o nimero total de arranjos
possiveis.

A solugdo esperada pré-calcula os fatoriais de 0! até 12! para permitir o célculo eficiente das
combinagoes multinomiais. Para cada dia, ele itera sobre todos os pares de tamanhos de gavetas
(j,k) de 0 a 4 e soma os resultados validos. Por fim, imprime o ntmero total de maneiras
correspondentes ou —1 se houver excesso de laranjas.

Complexidade total: O(N)

Maratona de Programacao SAET 2025 — 2025 13

Problema M. Madrugada na Praia

Tempo limite: 1000 ms
Memoria limite: 256 MiB
Autor: Ricardo Oliveira

Solucao

Sobraram B — V' baloes apds a ventania. Assim, verifique (com if) se B — V é divisivel por N,

B-V

testando se o resto da divisdo é igual a 0 (isto é, se (B —V)%N = 0). Se for, imprima . Caso

contrario, imprima —1.

Complexidade: O(1)

