
Maratona de Programação SAET 2025
Caderno de Problemas

2025

Maratona de Programação SAET 2025 – 2025 1

Olá!
Prova preparada com muito empenho por Henrique Farias e Ricardo Oliveira para a Semana
Acadêmica de Engenharia e Tecnologia (SAET) 2025 da UTFPR-Toledo. Esperamos que gostem!

Good luck & Have Fun

Maratona de Programação SAET 2025 – 2025 2

Informações Gerais
Esta prova contém 19 páginas (excluindo a capa), numeradas de 1 a 19. Verifique se a prova está
completa.

Entrada
• A entrada deve ser lida da entrada padrão.
• Todas as linhas da entrada, incluindo a última, terminam com o caractere de fim-de-linha

(\n).
• Quando a entrada contém vários valores separados por espaço, existe exatamente um espaço

entre dois valores consecutivos na mesma linha.

Saida
• A saida deve ser escrita na saida padrão.
• A saida deve ser impressa no formato especificado pelo problema. A saida não deve conter

nenhum dado adicional.
• Todas as linhas da saida, incluindo a última, terminam com o caractere de fim-de-linha (\n).

Maratona de Programação SAET 2025 – 2025 3

Problema A. Abrindo e Fechando Parênteses
Tempo limite: 1000 ms

Memória limite: 256 MiB

Uma string de abre e fecha parênteses está bem balanceada se: ou é (seguido de uma string
bem balanceada seguida de); ou é a concatenação de duas strings bem balanceadas; ou é vazia
(formalmente, é uma string gerada pela gramática S → (S)|SS|ε).

É dada uma string inicial s com N parênteses. Processe Q operações, onde cada operação pode ser:

• 1 l r: inverta todos os parênteses no intervalo [l..r]; isto é, para todo l ≤ i ≤ r, troque s[i]
pelo inverso de s[i]. O inverso de) é (, enquanto o inverso de (é);

• 2 l r: determine se a substring s[l..r] está bem balanceada.

Entrada

A primeira linha contém dois inteiros N e Q (1 ≤ N, Q ≤ 2 × 105), o tamanho da string e o número
de operações. A segunda linha contém a string inicial com N parênteses. As próximas Q linhas
descrevem uma operação cada, na forma t l r onde t = 1 ou t = 2, e 1 ≤ l ≤ r ≤ N .

Saída
Para cada operação com t = 2, imprima uma linha com sim se a substring s[l..r] está bem balanceada,
ou nao caso contrário.

Exemplos

Exemplo de entrada 1 Exemplo de saída 1

10 8
()())()())
2 6 9
2 1 10
1 4 6
2 1 10
1 5 8
2 3 10
2 1 4
2 2 9

sim
nao
sim
sim
nao
nao

Exemplo de entrada 2 Exemplo de saída 2

12 2
))))))((((((
1 1 12
2 1 12

sim

Observações
Considere o primeiro exemplo dado. Na primeira operação, a resposta é sim porque s[6..9] =()()
está bem balanceada. Na segunda operação, a resposta é nao porque s[1..10] = ()())()()) não
está bem balanceada.

Após a terceira operação (inverte s[4..6]), a string se torna ()((())()). A resposta da quarta
operação é sim porque agora s[1..10]= ()((())()) está bem balanceada.

Maratona de Programação SAET 2025 – 2025 4

Problema B. BugNote
Tempo limite: 1000 ms

Memória limite: 256 MiB

Ricardo Yagami é um genial professor universitário de algoritmos e estruturas de dados, porém ele
está entediado do jeito que anda o mundo. Os dias se passam e as mesmas notícias: alunos usando
IA para fazer trabalhos de algoritmos, agradecendo ao ChatGPT ao invés de Alan Turing — algo
realmente deplorável.

Porém, a vida de Ricardo mudou em certo dia, quando ele estava em sua sala e, de repente, viu um
caderno preto caindo do céu pela janela.

Como já estava entediado, foi até o caderno para ver do que se tratava e começou a ler:

BugNote (Caderno do Bug)

Modo de usar:

• A pessoa cujo primeiro nome for escrito neste caderno terá seu código bugado.
• Após escrever o primeiro nome da pessoa, deve-se especificar a linha exata do

código dela onde o bug ocorrerá.
• O caderno não surtirá efeito se o nome da pessoa for escrito errado. O caderno

considera um nome como certo se for escrito exatamente como dado na entrada.
• O caderno não surtirá efeito se a linha do código escrita nele exceder o total de

linhas no código real.
• Uma pessoa cuja a regra anterior vier a ocorrer poderá ter seu nome escrito

novamente e ainda ter efeito, porém se o número de tentativas erradas for maior ou
igual a 3, a pessoa passa a ser imune para sempre aos efeitos do BugNote.

Após testar o caderno em seu próprio código, Ricardo confirmou sua veracidade e decidiu bolar um
plano: punir todos os alunos que usam IA para fazer código ao invés de aprender — e se tornar o
Sênior do novo mundo!

Dado o número de alunos e o número de nomes que Ricardo escreveu no BugNote, determine quais
alunos foram punidos.

Entrada
A primeira linha contém dois inteiros N e Q (1 ≤ N, Q ≤ 2000), representando respectivamente o
número de alunos na turma e o número de nomes que Ricardo escreveu no BugNote.

As próximas N linhas contêm uma string si (o nome do aluno, que é único, não contém espaços e
contém no máximo 10 caracteres) e um inteiro li (1 ≤ li ≤ 105), representando o número de linhas
no código daquele aluno.

Em seguida, as próximas Q linhas contêm uma string ti e um inteiro xi, representando o nome e a
linha do código que Ricardo escreveu no BugNote.

Saída
A saída deve conter um inteiro K representando o número de alunos punidos seguido de K linhas
com os nomes desses alunos, na mesma ordem dada na entrada.

Caso nenhum aluno tenha sido punido, imprima -1.

Maratona de Programação SAET 2025 – 2025 5

Exemplos

Exemplo de entrada 1 Exemplo de saída 1

3 7
Betinha 50
Robinson 130
Evandro 45
Betinha 49
Evandro 130
Robinsno 21
Evandro 46
Evandro 51
Ian 69
Evandro 45

1
Betinha

Exemplo de entrada 2 Exemplo de saída 2

5 12
Tanaka 125
Eduardo 143
Luci 420
Yuri 420
Euler 2718
Yuri 512
Tanoka 30
Lucy 123
Yuri 499
eduardo 1
Euler 3141
Luci 123
yuri 421
EDUARDO 1
Yuri 234
Eduardo 1
Tanaka 30

4
Tanaka
Eduardo
Luci
Yuri

Maratona de Programação SAET 2025 – 2025 6

Problema C. Cabeçada
Tempo limite: 1000 ms

Memória limite: 256 MiB

Certo dia Tanaka e Henrique estavam voltando da reunião da maratona de programação do
PPCI. Como neste dia estava garoando, Henrique estava com seu capuz cobrindo a cabeça, o que
comprometeu parcialmente seu campo de visão, levando-o a um grande desastre. Em uma certa
esquina, Henrique deu uma cabeçada com tudo em uma placa de PARE, mas em sua defesa, essa
placa era comicamente pequena para os padrões de tamanho — tanto que ela era quase da altura
dele.

Desde então, Henrique ficou traumatizado e, para qualquer destino que for, deseja evitar passar
por placas que sejam ridiculamente pequenas. Dado um mapa da cidade, em que Henrique precisa
visitar Q lugares em ordem (isto é, após visitar um local X, ele deve partir dele para o próximo
destino), determine a menor distância que ele pode percorrer para cada destino, considerando apenas
caminhos seguros.

Um caminho seguro é aquele em que, caso exista uma placa em alguma rua, sua proporção com
a estatura de Henrique não seja menor que 5

4 (considere a estatura de Henrique igual a 1.82 m).
Caminhos sem placas são todos considerados seguros.

Caso não exista um caminho seguro para o próximo destino, considere como ponto de partida para
o destino seguinte a última posição que ele esteve.

Entrada
A primeira linha contém três inteiros N , M e Q — o número de destinos, ruas e locais que Henrique
precisa visitar, respectivamente (2 ≤ N ≤ 100, 1 ≤ M ≤ 2 × 100, 1 ≤ Q ≤ 100).

As próximas M linhas contêm três inteiros X, Y , D e um ponto flutuante H, indicando que existe
uma rua entre X e Y , com distância D e uma placa de altura H (caso H = 0, considere que não
há placa nessa rua) (1 ≤ X, Y ≤ N , 1 ≤ D ≤ 109, 0 ≤ H ≤ 10, H será dado com no máximo duas
casas decimais).

As próximas Q linhas contêm apenas um inteiro, representando o próximo destino que Henrique
precisa alcançar a partir de seu destino atual (considere que Henrique sempre começa no destino 1).

Saída
A saída deve conter Q linhas. Para cada linha, imprima um inteiro representando a distância do
caminho mais curto e seguro até o destino de Henrique. Caso não exista caminho seguro para um
destino, imprima -1.

Exemplos

Exemplo de entrada 1 Exemplo de saída 1

4 3 3
1 4 5 0
2 4 6 2.54
3 3 1 0
2
3
1

11
-1
11

Maratona de Programação SAET 2025 – 2025 7

Exemplo de entrada 2 Exemplo de saída 2

10 9 5
1 2 4 0
1 4 9 2.05
2 4 4 1.99
1 3 4 3.23
4 9 13 0
3 5 5 2.45
3 6 19 0
4 9 4 1.11
6 8 49 2.21
4
5
8
3
2

-1
9
-1
5
8

Observações
Foto da placa do ocorrido do enunciado afins de evidenciar o quão estupidamente pequena ela é
(banana como referência).

Maratona de Programação SAET 2025 – 2025 8

Problema D. Disco de senha
Tempo limite: 2000 ms

Memória limite: 512 MiB

Douglas está muito preocupado com um grande vazamento de senhas de sua rede social favorita.
Por isso, ele decidiu que irá escolher uma nova senha para sua rede. Metódico que é, Douglas decidiu
que irá escolher sua nova senha usando seu disco de senha, que é um disco circular contendo N
letras minúsculas. A senha será escolhida da seguinte forma:

1. Douglas irá escolher alguma letra no disco para ser a primeira letra da senha;

2. A senha será formada percorrendo o disco em sentido horário, a partir da primeira letra,
concatenando as letras percorridas;

3. A senha deverá ter no mínimo 1 e no máximo K letras.

Quantas senhas distintas podem ser formadas dessa maneira?

Entrada
A primeira linha contém dois inteiros N e K (1 ≤ K ≤ N ≤ 105), o número de letras no disco
e o tamanho máximo da senha, respectivamente. A segunda linha contém N letras minúsculas
indicando as letras no disco, em sentido horário, a partir de qualquer uma delas.

Saída
Imprima uma linha com o número de senhas distintas que podem ser formadas.

Exemplos
Exemplo de entrada 1 Exemplo de saída 1

6 3
fbcfbc

9

Exemplo de entrada 2 Exemplo de saída 2

4 2
baaa

5

Exemplo de entrada 3 Exemplo de saída 3

6 6
turing

36

Observações

f
b

c
f

b

c
b

a

a
a

Os discos acima representam os dois primeiros exemplos de entrada. No primeiro exemplo, as senhas
que podem ser formadas com até K = 3 letras são b, c, f, bc, cf, fb, bcf, cfb e fbc, totalizando 9
senhas distintas. No segundo exemplo, as senhas que podem ser formadas com até K = 2 letras são
a, b, aa, ab e ba, totalizando 5 senhas distintas.

Maratona de Programação SAET 2025 – 2025 9

Problema E. Espaço na van
Tempo limite: 1000 ms

Memória limite: 256 MiB

Está chegando a hora! A etapa regional da Maração de Programatona ocorrerá nas próximas
semanas, e o seu coach já está vendo como irá levar todos os N participantes da universidade para
competir na cidade vizinha.

A universidade disponibiliza uma van para essas viagens. A van conta com M poltronas (além
da do motorista), de diferentes larguras. Algumas poltronas são tão pequenas e apertadas que
infelizmente não é possível usá-las na viagem; as poltronas que não pode ser usadas são aquelas
com L cm ou menos de largura.

Sua tarefa é ajudar o seu coach a determinar se é possível levar todos os N participantes na van
(em viagem única), ou se será necessário usar outros veículos além da van.

Entrada

A primeira linha contém dois inteiros N e M (1 ≤ N, M ≤ 105), o número de competidores e de
poltronas na van. A próxima linha contém M inteiros li (1 ≤ li ≤ 109) indicando a largura de
cada poltrona, em centímetros. A última linha contém um inteiro L (1 ≤ L ≤ 109) indicando que
poltronas com L cm ou menos de largura não podem ser usadas.

Saída
Imprima uma linha com SIM se é possível levar todos os competidores na van, ou NAO caso contrário.

Exemplos

Exemplo de entrada 1 Exemplo de saída 1

4 6
300 200 350 100 400 800
200

SIM

Exemplo de entrada 2 Exemplo de saída 2

5 6
300 200 350 100 400 800
200

NAO

Maratona de Programação SAET 2025 – 2025 10

Problema F. Formação da dupla perfeita
Tempo limite: 1000 ms

Memória limite: 256 MiB

A Respiração do Trovão é uma técnica de luta milenar usada em combate por grandes guerreiros.
Existem F formas diferentes de usar a técnica. Cada forma exige muito para ser dominada; por
isso, alguns guerreiros podem dominar apenas algumas das formas, enquanto não dominem outras.

O Vovô é um grande mestre da Respiração do Trovão, e tem hoje N discípulos sob seu treinamento.
O Vovô sabe quais formas cada discípulo seu domina, e agora quer escolher dois de seus discípulos
para criar a dupla perfeita. Uma dupla é perfeita se cada forma da Respiração do Trovão é dominada
por pelo menos um discípulo da dupla.

De quantas maneiras o vovô pode escolher dois discípulos para criar a dupla perfeita?

Entrada
A primeira linha contém dois inteiros N e F (2 ≤ N ≤ 105, 1 ≤ F ≤ 10), o número de discípulos
e de formas da técnica, respectivamente. Os discípulos são numerados de 1 a N , e as formas são
numeradas de 1 a F .

As próximas N linhas contém F caracteres cada. O j-ésimo caracter da i−ésima linha é S se o
discípulo i domina a forma j, ou N se não domina.

Saída
Imprima uma linha com o número de maneiras de formar a dupla perfeita.

Exemplos

Exemplo de entrada 1 Exemplo de saída 1

2 6
SNNNNN
NSSSSS

1

Exemplo de entrada 2 Exemplo de saída 2

4 4
SSNS
SSSS
NNNN
NSSN

4

Exemplo de entrada 3 Exemplo de saída 3

3 3
SNN
NSN
NNS

0

Observações
No primeiro exemplo, a única dupla que pode ser formada é a dos discípulos {1, 2}.

No segundo exemplo, as possíveis duplas são {1, 2}, {1, 4}, {2, 3} e {2, 4}.

Maratona de Programação SAET 2025 – 2025 11

Problema G. Genectorio
Tempo limite: 1000 ms

Memória limite: 256 MiB

Eduardo é um grande fã de jogos eletrônicos de automação. Recentemente, ele descobriu um novo
jogo chamado Genectorio. Nesse jogo, o jogador recebe um lado de um filamento de DNA com N
nucleotídeos, que podem ser representados pelas letras A, C, G e T.

O objetivo do jogo é construir a sequência complementar do DNA, isto é, para cada nucleotídeo:

• A deve ser pareado com T;
• T deve ser pareado com A;

• C deve ser pareado com G;
• G deve ser pareado com C.

Entretanto, para deixar o desafio mais interessante, o jogo possui um modo secreto onde a sequência
complementar é criptografada utilizando uma variação da Cifra de César. A Cifra de César consiste
em substituir cada letra da string pela letra que ocorre k posições depois dela no alfabeto (circular),
onde k é o deslocamento da letra.

Nesse modo, o deslocamento de cada nucleotídeo é determinado por operações de XOR bit a bit (⊕)
da seguinte forma:

• Seja X um número inteiro dado na entrada.
• Para o primeiro nucleotídeo N1, o deslocamento é calculado como (X ⊕ N1).
• Para o segundo nucleotídeo N2, o deslocamento é calculado como (X ⊕ N1 ⊕ N2).
• O processo continua seguindo essa lógica cumulativa até o último nucleotídeo.

Após aplicar todas as substituições, o jogador deve imprimir a sequência complementar criptografada.

Considere que o alfabeto tem apenas as letras A,C,G e T, nesta ordem. Ainda, as letras A, C, G e
T devem ser convertidas para 0, 1, 2 e 3 respectivamente para fins do cálculo do operador XOR.

Entrada
A primeira linha contém dois inteiros N e X (1 ≤ N ≤ 105, 0 ≤ X ≤ 105). A segunda linha contém
uma string S de tamanho N , representando a sequência de nucleotídeos.

Saída
Imprima uma linha com a string criptografada resultante após aplicar todas as operações descritas.

Exemplos
Exemplo de entrada 1 Exemplo de saída 1

6 7
GCATGC

GGTTGG

Exemplo de entrada 2 Exemplo de saída 2

20 5
AACGTATTGCATGCAGTCGG

AAGTCAGCAACCAACCTACT

Observações
No primeiro exemplo de entrada, a string complementar é CGTACG. O deslocamento da primeira letra
é 7 ⊕ 2 = 5, e logo a primeira letra criptografada é C → G → T → A → C → G. O deslocamento
da segunda letra é 7 ⊕ 2 ⊕ 1 = 4, e logo a segunda letra criptografada é G → T → A → C → G.

Maratona de Programação SAET 2025 – 2025 12

Problema H. Hora da Pizza
Tempo limite: 1000 ms

Memória limite: 256 MiB

Nada como uma agradável noite com seus amigos na sua casa comendo uma pizza enquanto assistem
seu anime favorito!

Opa, a pizza chegou! Como o grupo tem 4 pessoas ao todo, você decidiu cortar a pizza em 4 pedaços.
Você fez um corte horizontal e outro corte vertical, de tal forma que os cortes intersectam em um
ponto P na pizza.

Oh não! Você acabou de perceber que os 4 pedaços podem ter ficado de tamanho diferentes! Dados
o raio da pizza e a coordenada do ponto P , determine a área dos 4 pedaços obtidos.

Entrada

A entrada contém uma linha com três inteiros R, X e Y (1 ≤ R ≤ 30,
√

X2 + Y 2 < R), o raio da
pizza e as coordenadas do ponto P , respectivamente. Considere que a pizza está centrada na origem
(isto é, seu centro é o ponto (0, 0)).

Saída
Imprima uma linha com quatro valores A1, A2, A3 e A4 indicando a área de cada pedaço da pizza,
arredondadas com três casas decimais. Imprima os valores em ordem não-decrescente (isto é, de
forma que A1 ≤ A2 ≤ A3 ≤ A4).

Exemplos

Exemplo de entrada 1 Exemplo de saída 1

4 2 1 2.956 6.871 14.261 26.177

Exemplo de entrada 2 Exemplo de saída 2

25 -4 -10 188.139 307.282 594.466 873.609

Exemplo de entrada 3 Exemplo de saída 3

1 0 0 0.785 0.785 0.785 0.785

Observações
A figura abaixo representa o primeiro exemplo de entrada:

Maratona de Programação SAET 2025 – 2025 13

Problema I. Its Over
Tempo limite: 3000 ms

Memória limite: 512 MiB

Betinha da Silva é um estudante que acha arrays de números inteiros algo muito Pogger e, por isso,
ele coleciona arrays de números inteiros. Toda semana Betinha vai na loja de arrays e compra N
arrays para adicionar na sua coleção.

Porém, Betinha é um colecionador muito RedPill, portanto ele só coloca em sua coleção um array
se ele for um array Banger.

Um array é considerado um array Banger se a soma de todos os números nas posições primas do
array também for um número primo.

Betinha acha totalmente Brutal ter que verificar se os arrays que ele compra são Bangers ou não,
então ele compra todos sem mais nem menos. Mas às vezes ele pode ser Moggado por essa decisão:
isso acontece quando ele acaba comprando um conjunto de arrays que não contém nenhum Banger,
de forma que sobra nada para Betinha colocar em sua coleção naquela semana.

Sua tarefa é escrever um programa que determine o número de arrays Bangers que Betinha conseguiu
naquela semana.

Entrada

A primeira linha contém um inteiro N (1 ≤ N ≤ 103), o número de arrays que Betinha comprou na
loja naquela semana.

Em seguida, para cada um dos N arrays:

A primeira linha contém um inteiro M (1 ≤ M ≤ 103) , o tamanho do array.

A linha seguinte contém M inteiros A (1 ≤ A ≤ 105), os elementos do array. Considere que o array
é 1-indexado.

Saída
A saída deve ser na primeira linha, um inteiro B, a quantidade de arrays Bangers que Betinha
conseguiu naquela semana.

Na linha seguinte, B inteiros representando as somas correspondentes de cada array Banger, na
ordem dada na entrada.

Caso Betinha tennha sido Moggado, ou seja, caso B = 0, a saída deve ser a seguinte frase em letras
maiúsculas: ITS OVER SOBROU NADA PRO BETINHA

Maratona de Programação SAET 2025 – 2025 14

Exemplos

Exemplo de entrada 1 Exemplo de saída 1

3
5
1 9 4 20 4
6
2 4 6 8 10 12
3
1 2 3

2
17 5

Exemplo de entrada 2 Exemplo de saída 2

2
5
2 2 2 2 2
4
5 7 3 7

ITS OVER SOBROU NADA PRO BETINHA

Observações
Na semana do primeiro exemplo Betinha tem no primeiro array, nas posições primas 2, 3 e 5, os
números 9, 4 e 4 respectivamente, o que dão soma 17, que é um número primo, logo sendo um array
Banger.

Maratona de Programação SAET 2025 – 2025 15

Problema J. Jogo
Tempo limite: 1000 ms

Memória limite: 256 MiB

"O Jogo"é um jogo bem peculiar de se jogar, onde basicamente você só está ganhando quando
esquece completamente que ele existe, e está perdendo enquanto está consciente do jogo (Logo, você
leitor está perdendo o jogo neste exato momento).

Erick é um cara muito organizado, e decidiu anotar em um caderno todas as datas em que se lembrou
da existência do jogo e, consequentemente, perdeu. Agora, ele quer saber, dado esse histórico, qual
foi o menor e o maior intervalo de tempo (em dias) que conseguiu ficar sem perder o jogo.

Entrada

A primeira linha da entrada contém um inteiro N (3 ≤ N ≤ 105), representando o número de datas
registradas.

Cada uma das próximas n linhas contém três inteiros D, M , A (1 ≤ D ≤ 30, 1 ≤ M ≤ 12,
1 ≤ A ≤ 109), representando o dia, o mês e o ano de uma data em que Erick perdeu o jogo. É
garantido que as datas estão em ordem cronológicas.

Considere que todos os meses tem 30 dias e todos os anos 360 dias;

Saída
A saída deve conter dois inteiros: o menor intervalo e o maior intervalo, em dias, entre duas datas
consecutivas em que Erick perdeu o jogo.

Exemplos

Exemplo de entrada 1 Exemplo de saída 1

3
13 9 2025
15 9 2025
17 10 2025

2 32

Exemplo de entrada 2 Exemplo de saída 2

6
12 3 2019
5 11 2019
1 1 2020
4 6 2022
30 4 2025
29 9 2025

56 1046

Exemplo de entrada 3 Exemplo de saída 3

3
14 10 2017
23 1 2018
29 5 2024

99 2286

Maratona de Programação SAET 2025 – 2025 16

Problema K. Kurt, O camaleão que curte reló-
gios

Tempo limite: 1000 ms
Memória limite: 256 MiB

Kurt, o camaleão (Mascote do PPCI) é um colecionador de relógios antigos. Ele possui N relógios,
cada um marcando uma hora diferente em mostradores de 12 horas, com ponteiros de horas, minutos
e segundos.

Kurt descobriu um botão curioso em cada relógio: ao pressionar o botão em um relógio específico,
todos os outros relógios (exceto o pressionado) adiantam exatamente um segundo.

Por exemplo, se há três relógios marcando:

[01:00:00, 03:00:00, 05:00:00]

e Kurt pressiona o botão do segundo relógio (03:00:00), o resultado será:

[01:00:01, 03:00:00, 05:00:01]

Kurt deseja que todos os relógios mostrem exatamente a mesma hora (mesmo valor de horas,
minutos e segundos). Determine o número mínimo de vezes que ele precisa apertar algum botão
para que isso aconteça.

Os relógios operam em formato de 12 horas, isto é, após 11:59:59 vem 00:00:00 novamente.

Entrada

A primeira linha contém um inteiro N (1 ≤ N ≤ 105), o número de relógios.

Cada uma das próximas N linhas contém três inteiros hi, mi e si (0 ≤ hi ≤ 11, 0 ≤ mi, si ≤ 59),
representando a hora, minuto e segundo mostrados no i-ésimo relógio.

Saída
Imprima um único inteiro, o número mínimo de vezes que Kurt precisa pressionar algum botão para
que todos os relógios fiquem iguais.

Exemplos

Exemplo de entrada 1 Exemplo de saída 1

2
3 14 15
1 41 42

5553

Exemplo de entrada 2 Exemplo de saída 2

3
0 1 4
11 45 54
11 59 59

1755

Maratona de Programação SAET 2025 – 2025 17

Exemplo de entrada 3 Exemplo de saída 3

4
0 0 0
0 0 0
0 0 0
0 0 1

1

Observações
No primeiro caso teste como só há apenas 2 relógios:

Kurt pode apertar o botão do primeiro relógio até que o segundo fique sincronizado com ele, o que
ocorre após 5553 cliques:

Maratona de Programação SAET 2025 – 2025 18

Problema L. Laranja
Tempo limite: 1000 ms

Memória limite: 256 MiB

Hicard adora laranjas, tanto que todo dia no RU (Restaurante Universitário) ele sempre pega uma
laranja de sobremesa e leva para casa para poder saciar-se mais tarde. Porém, uma laranja por dia
não é o bastante para ele. Por isso, seus amigos da faculdade sempre pegam a laranja a que têm
direito e doam para que Hicard possa levar mais de uma laranja para casa.

Além de ser um grande fã de laranjas, Hicard também é apaixonado por análise combinatória.
Considere que Hicard tem inicialmente 0 laranjas. Então, após cada dia i, ele ganha Gi novas
laranjas e então come Ci laranjas.

Ele gostaria de saber, ao final de cada dia, de quantas maneiras pode rearranjar as laranjas que
ainda tem em sua fruteira, que possui exatamente 3 gavetas, cada uma podendo conter até 4 laranjas.
Tanto as laranjas quanto as gavetas são distinguíveis entre si, mas, dentro de uma gaveta, a ordem
em que as laranjas ficam é irrelevante.

Entrada

A primeira linha contém um inteiro N (1 ≤ N ≤ 104), o número de dias que Hicard pegou ou comeu
laranjas.

As próximas N linhas contêm dois inteiros Gi e Ci (0 ≤ G, C ≤ 100), representando o número de
laranjas que Hicard ganhou e comeu em cada dia, respectivamente.

Saída
A saída deve conter N linhas. Em cada linha, imprima o número de maneiras diferentes que Hicard
pode organizar sua fruteira ao final do respectivo dia. Se houver mais laranjas do que espaço na
fruteira em determinado dia, isto é, se Hicard ter mais que 12 laranjas no final de um dia, imprima
−1 para aquele dia. É garantido que que o número de laranjas ao final de um dia nunca será
negativo.

Exemplos

Exemplo de entrada 1 Exemplo de saída 1

9
2 0
8 4
1 4
0 3
1 0
51 45
30 9
1 22
15 20

9
690
27
1
3
1890
-1
1890
9

Observações
No exemplo de entrada, Hicard tem 2 laranjas ao final do primeiro dia (por exemplo, a laranja A e a B).
As 9 maneiras de rearranjá-las nas 3 gavetas são ({A, B}, {}, {}), ({}, {A, B}, {}), ({}, {}, {A, B}),
({A}, {B}, {}), ({A}, {}, {B}), ({B}, {A}, {}), ({B}, {}, {A}), ({}, {A}, {B}) e ({}, {B}, {A}).

Maratona de Programação SAET 2025 – 2025 19

Problema M. Madrugada na Praia
Tempo limite: 1000 ms

Memória limite: 256 MiB

Henrique “Gubi” é um garoto que adora Maratonas de Programação! Certa noite, depois de uma
longa e divertida Maratona, Gubi e seus amigos (que também são maratonistas) tiveram uma ideia:
passar toda a madrugada acordados na praia, curtindo a areia, o mar e o luar. Gubi topou na hora!
Afinal, ele já está acostumado a virar as noites acordado, e agora fará isso com seus amigos em um
lugar good vibes.

Gubi e seus amigos decidiram levar para a praia todos os B balões que conquistaram na Maratona
daquele dia. Em um determinado momento da noite, entretanto, uma forte ventania levou V desses
balões embora.

No final da noite (já ao amanhecer), Gubi e seus amigos resolveram dividir todos os balões que
sobraram entre as N pessoas do grupo, de forma que todas as pessoas ficassem com a mesma
quantidade de balões.

Ajude Gubi a determinar se é possível dividir todos os balões que sobraram igualmente entre as
pessoas do grupo e, se sim, com quantos balões cada pessoa vai ficar.

Entrada
A entrada contém três inteiros N , B e V (1 ≤ N ≤ 50, 1 ≤ B ≤ 2000, 0 ≤ V ≤ B) indicando o
número de pessoas no grupo, o número total de balões inicialmente na praia e o número de balões
levados pelo vento, respectivamente.

Saída
Imprima uma linha com o número de balões com que cada pessoa irá ficar. Se não for possível fazer
a divisão, imprima -1.

Exemplos

Exemplo de entrada 1 Exemplo de saída 1

5 14 4 2

Exemplo de entrada 2 Exemplo de saída 2

7 50 1 7

Exemplo de entrada 3 Exemplo de saída 3

6 12 3 -1

